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Abstract. The authors obtain a fractional Sobolev inequality for Sobolev spaces
Ẇ s,X(Rn) for ball Banach function spaces X on Rn with the homogeneity and
the non-collapse properties. Precisely, the authors show the existence of a pos-
itive constant C such that, for any f ∈ Ẇ s,X(Rn) ∩ X

α
α+s ,

∥ f ∥Ẇ s,X (Rn) ≥ C ∥ f ∥X α
α+s ,

where α is the homogeneity index of X, s ∈ (0,min{−α, 1}), and X
α
α+s is the

α
α+s -convexification of X. Moreover, under some mild assumptions, the authors
prove that the closure of C∞c (Rn) with respect to ∥ · ∥Ẇ s,X (Rn) modulo constants
is identified with Ẇ s,X(Rn) ∩ X

α
α+s . When X is a Lebesgue space, these results

reduce to the well-known Sobolev embeddings for which the restriction s ∈
(0,min{−α, 1}) is sharp. However, these results also provide new Sobolev em-
beddings for Morrey spaces, mixed-norm Lebesgue spaces, Lebesgue spaces
with power weights, Besov–Triebel–Lizorkin–Bourgain–Morrey spaces, and
Lorentz spaces. As in the case for the classical Sobolev inequality, these re-
sults have a wide range of applications.

1. Introduction

It is well known that, for any given s ∈ (0, 1) and p ∈ [1,∞), the homogeneous
fractional Sobolev space Ẇ s,p is defined as the space of all measurable functions
f on Rn whose Gagliardo semi-norm

∥ f ∥Ẇ s,p :=
[∫
Rn

∫
Rn

| f (x) − f (y)|p

|x − y|n+sp dx dy
] 1

p

(1.1)

is finite. Here and thereafter, since all function spaces appearing in this article are
defined on Rn, to simplify the presentation, we will not indicate their underlying
spaces. The classical Sobolev embedding, also known as the fractional Sobolev
inequality, states that when sp < n one has

∥ f ∥Lp∗s ≤ C ∥ f ∥Ẇ s,p(1.2)

for any f ∈ C∞c with the positive constant C independent of f , where p∗s := np
n−sp

denotes the critical Sobolev exponent and C∞c denotes the set of all infinite differ-
entiable functions on Rn with compact support. We refer to [54, Theorem 10.2.1]
for an elementary proof of (1.2) (see also [65, Théorème 8.1]). It is well known
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that the Sobolev type inequalities on various function spaces have received a lot
of attention and intensive studies for a long time; see, for example, Haroske et
al. [26, 28, 32], Nakai et al. [55, 56, 57, 58, 59], Sawano et al. [69, 70, 71], Liu
et al. [46], Ho [36], and, recently, Alvarado et al. [2, 3, 4]. The Sobolev type
inequalities have wide applications in harmonic analysis and partial differential
equations (see, for example, [27, 34, 54, 63]).

The ball Banach function space X was introduced by Sawano et al. [68] in
order to unify the study of several important function spaces. Compared with Ba-
nach function spaces, ball Banach function spaces contain a long list of function
spaces. For example, Morrey spaces, Orlicz-slice spaces, mixed-norm Lebesgue
spaces, and weighted Lebesgue spaces are all ball Banach function spaces, but
they may not be Banach function spaces (see [68, 79, 80] for the details). Re-
cently, Dai et al. [16] studied the Bourgain–Brezis–Mironescu formula of Sobolev
type spaces based on ball Banach function spaces. Moreover, the Brezis–Van
Schaftingen–Yung formula of Sobolev type spaces based on ball Banach func-
tion spaces was also established in [17, 18] and applied to improve fractional
Sobolev and Gagliardo–Nirenberg inequalities.

In this article, we establish the fractional Sobolev inequality in the setting
of ball Banach function spaces X and, as an application, we characterize the
closure of C∞c with respect to ∥ · ∥Ẇ s,X , which is a new Gagliardo semi-norm
associated with X. To be precise, assuming that X has the homogeneity property
and the non-collapse property, that is, for any f ∈ X, λ ∈ (0,∞), and x ∈ Rn,
∥ f (λ·)∥X = λα∥ f ∥X for some α ∈ (−∞, 0) and ∥1B(x,1)∥X ≳ 1 with the implicit
positive constant independent of x ∈ Rn, we show that there exists a positive
constant C such that, for any f ∈ Ẇ s,X ∩ X

α
α+s ,

∥ f ∥Ẇ s,X :=

∥∥∥∥∥∥
∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)

≥ C ∥ f ∥X α
α+s ,

where s ∈ (0,min{−α, 1}). Here and thereafter, for any x ∈ Rn and r ∈ (0,∞),

B(x, r) := {y ∈ Rn : |y − x| < r}

denotes the ball with center x and radius r and, for any f ∈M , let

∥ f (x)∥X(x) := ∥ f (·)∥X.

Then, using this inequality, we prove that the closure of C∞c with respect to ∥·∥Ẇ s,X

modulo constants, denoted byDs,X, is identified with Ẇ s,X ∩ X
α
α+s . These results

have a wide range of applications and, in particular, when X is a Lebesgue space,
they reduce to the well-known embeddings, that is, (1.2) and [11, Theorem 3.1];
this indicates that in general the restriction s ∈ (0,min{−α, 1}) is sharp. To the
best of our knowledge, when X is a Morrey space, a mixed-norm Lebesgue space,
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the Lebesgue space with power weight, a Besov–Triebel–Lizorkin–Bourgain–
Morrey space, or a Lorentz space, these embeddings are new in the literature.

Recall that all the known proofs of (1.2) strongly depend on the explicit in-
tegral expression of the Lebesgue norm under consideration. Since ∥ · ∥X has no
explicit expression, the known classical proofs are inapplicable for the ball Ba-
nach fractional Sobolev inequality. To overcome this essential difficulty, we fully
employ the homogeneity property and the non-collapse property of X, which
are used, to replace the dilation invariance and the translation invariance of the
Lebesgue norm, respectively; these are crucial tools in the known proofs of the
classical fractional Sobolev inequality.

The remainder of this article is organized as follows.
In Section 2, we recall some concepts related to ball Banach function spaces.

Then, assuming that a ball Banach function space X has the homogeneity prop-
erty (Assumption I), we introduce the homogeneous ball Banach fractional Sobolev
space Ẇ s,X, thereby extending the concept of the homogeneous fractional Sobolev
space Ẇ s,p to this setting.

Section 3 is devoted to the ball Banach fractional Sobolev inequality. Specif-
ically, in Theorem 3.2, under Assumption I (the homogeneity property) and As-
sumption II (the non-collapse property of X), we show that, if s ∈ (0,min{−α, 1}),
then for any f in MX we have ∥ f ∥Ẇ s,X ≳ ∥ f ∥X α

α+s with the implicit positive con-
stant independent of f . This extends the classical fractional Sobolev inequality
from the Lebesgue space to the ball Banach function space (see Remark 3.3).
Moreover, we prove that the ball Banach fractional Sobolev inequality is valid
not only for C∞c functions but also for Ẇ s,X ∩ X

α
α+s functions.

Section 4 is devoted to providing an equivalent characterization of the closure
of C∞c with respect to ∥ · ∥Ẇ s,X modulo constants, which is denoted byDs,X. To go
further, we need an additional mild assumption on X (see Assumption III). Under
Assumptions I, II, and III, we show that Ds,X is identified with Ẇ s,X ∩ X

α
α+s . To

be precise, we prove that there exists a linear isometric isomorphism

I : Ds,X → Ẇ s,X ∩ X
α
α+s .

On one hand, using the ball Banach fractional Sobolev inequality, we show that
I is injective. On the other hand, by Hölder’s inequality associated with the ball
Banach function space (see Lemma 4.8), we prove that I is surjective. This result
is an extension of [11, Theorem 3.1] from the classical Gagliardo semi-norm
∥ · ∥Ẇ s,p to ∥ · ∥Ẇ s,X (see Remark 4.2). Finally, we show that Assumption III(iii)
is just slightly stronger than a necessary and sufficient condition of C∞c ⊂ Ẇ s,X,
which implies that this assumption is necessary in some sense.
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In Section 5, we apply our main results obtained in the above sections to
several specific examples of ball Banach function spaces, namely the Morrey
space Mp

r , the mixed-norm Lebesgue space L p⃗, the Lebesgue space with power
weight Lr

ω, the Besov–Bourgain–Morrey space ṀBp,τ
q,r , and the Lorentz space Lp,q

(see, respectively, Theorems 5.3, 5.6, 5.7, 5.10, 5.11, 5.13, 5.14, 5.16, and 5.17).
Finally, we state our notation and conventions. We let N := {1, 2, . . .}, Z+ :=

N ∪ {0}, and Zn
+ := (Z+)n. We always denote by C a positive constant which is

independent of the main parameters involved, but it may vary from line to line.
The symbol f ≲ g means that f ≤ Cg. If f ≲ g and g ≲ f , we then write f ∼ g.
If f ≤ Cg and g = h or g ≤ h, we then write f ≲ g = h or f ≲ g ≤ h. We use 0
to denote the origin of Rn. For any measurable subset E of Rn, we denote by 1E

its characteristic function and denote by E∁ its complementary set. In addition,
we use the symbol Lp

loc with p ∈ (0,∞] to denote the set of all measurable
functions f on Rn such that f 1E ∈ Lp for any bounded measurable set E ⊂ Rn.
Furthermore, for any λ ∈ (0,∞) and any ball B(x, r) ⊂ Rn with x ∈ Rn and
r ∈ (0,∞), let λB(x, r) := B(x, λr). Finally, for any q ∈ [1,∞], we denote by q′

its conjugate exponent, that is, 1
q +

1
q′ = 1.

2. Preliminaries

In this section, we recall the definition of ball Banach function spaces and
introduce homogeneous ball Banach fractional Sobolev spaces. In what follows,
we denote by M the set of all measurable functions on Rn and we let

(2.1) B := {B(x, r) : x ∈ Rn and r ∈ (0,∞)} .

The following concept is precisely [68, Definition 2.2].

Definition 2.1. Let X ⊂ M be a quasi-normed linear space equipped with a
quasi-norm ∥ · ∥X, which makes sense for all measurable functions on Rn. Then
X is called a ball quasi-Banach function space on Rn if it satisfies:

(i) if f ∈M , then ∥ f ∥X = 0 implies that f = 0 almost everywhere;
(ii) if f , g ∈M , then |g| ≤ | f | almost everywhere implies that ∥g∥X ≤ ∥ f ∥X;

(iii) if { fm}m∈N ⊂ M and f ∈ M , then 0 ≤ fm ↑ f almost everywhere as
m→ ∞ implies that ∥ fm∥X ↑ ∥ f ∥X as m→ ∞;

(iv) B ∈ B implies that 1B ∈ X, where B is the same as in (2.1).

Moreover, a ball quasi-Banach function space X is called a ball Banach func-
tion space if it satisfies:

(v) for any f , g ∈ X, ∥ f + g∥X ≤ ∥ f ∥X + ∥g∥X;
(vi) for any ball B ∈ B, there exists a positive constant C(B), depending on B,

such that, for any f ∈ X,
∫

B
| f (x)| dx ≤ C(B)∥ f ∥X.
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Remark 2.2. (i) Let X be a ball Banach function space on Rn. By [77, Re-
mark 2.6(i)], we conclude that, for any f ∈ M , ∥ f ∥X = 0 if and only if
f = 0 almost everywhere.

(ii) As mentioned in [77, Remark 2.6(ii)], we obtain an equivalent formula-
tion of Definition 2.1 via replacing any ball B by any bounded measurable
set E therein.

(iii) We should point out that, in Definition 2.1, if we replace a ball B by
any measurable set E with finite measure, we obtain the definition of
(quasi-)Banach function spaces, which were originally introduced in [7,
Definitions 1.1 and 1.3]. Thus, a (quasi-)Banach function space is also
a ball (quasi-)Banach function space and the converse is not necessarily
true.

(iv) By [19, Theorem 2], we conclude that both (ii) and (iii) of Definition 2.1
imply that any ball Banach function space is complete.

(v) Examples of Ball Banach function spaces include various function spaces,
such as the Lebesgue space Lp, the Morrey space Mp

r , the mixed-norm
Lebesgue space L p⃗, the weighted Lebesgue space Lr

ω, the Besov–Bourgain–
Morrey space ṀBp,τ

q,r , and the Lorentz space Lp,q. See, respectively, Def-
initions 5.2, 5.5, 5.9, 5.12, and 5.15 for their precise definitions and also
Section 5 for more details.

The associate space X′ of a given ball Banach function space X is defined as
follows (see [7, Chapter 1, Section 2] or [68, p. 9]).

Definition 2.3. For any given ball Banach function space X, its associate space
(also called the Köthe dual space) X′ is defined by setting

X′ := { f ∈M : ∥ f ∥X′ < ∞} ,

where, for any f ∈ X′,

∥ f ∥X′ := sup
{
∥ f g∥L1 : g ∈ X, ∥g∥X = 1

}
and ∥ · ∥X′ is called the associate norm of ∥ · ∥X.

Remark 2.4. From [68, Proposition 2.3], we deduce that, if X is a ball Banach
function space, then its associate space X′ is also a ball Banach function space.

We also recall the concept of the convexity of ball Banach function spaces;
this is a part of [68, Definition 2.6].

Definition 2.5. Let X be a ball Banach function space and p ∈ (0,∞). The p-
convexification Xp of X is defined by setting

Xp := { f ∈M : | f |p ∈ X} ,
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equipped with the quasi-norm ∥ f ∥Xp := ∥ | f |p∥1/pX for any f ∈ Xp.

We recall the definition of ball Banach function spaces with absolutely con-
tinuous norm; see [8, Definition 3.1] and [76, Definition 3.2].

Definition 2.6. A ball Banach function space X is said to have an absolutely
continuous norm if, for any f ∈ X and any sequence of measurable sets, {E j} j∈N ⊂

Rn with E j+1 ⊂ E j for any j ∈ N and
⋂

j∈N E j = ∅, ∥ f 1E j∥X → 0 as j→ ∞.

Next, we extend the concept of the homogeneous fractional Sobolev space to
the ball Banach function space. To this end, we need the following assumption.

Assumption I. Let X be a ball Banach function space and α ∈ (−∞, 0). We
consider the homogeneity property that for any λ ∈ (0,∞) and f ∈ X it holds
∥ f (λ·)∥X = λα∥ f ∥X.

Remark 2.7. If X satisfies Assumption I with α ∈ (−∞, 0), then, by Definition
2.1(iii) and the fact that ∥1B(0,1)∥X > 0 which is a simple consequence of Defini-
tion 2.1(i), we conclude that

∥1Rn∥X = lim
r→∞

∥∥∥1B(0,r)

∥∥∥
X
= lim

r→∞
r−α

∥∥∥1B(0,1)

∥∥∥
X
= ∞.

Definition 2.8. Let X satisfy Assumption I with α ∈ (−∞, 0) and let s ∈ (0, 1).
The homogeneous ball Banach fractional Sobolev space Ẇ s,X is defined to be the
set of all functions f ∈M such that

∥ f ∥Ẇ s,X :=

∥∥∥∥∥∥
∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)

< ∞.

Using Remark 2.2(v), we find that Lp, Mp
r , L p⃗, Lr

|·|β
, ṀBp,τ

q,r , and Lp,q are all
ball Banach function spaces and they can be verified to satisfy Assumption I;
see Section 5 for the details. Therefore, we obtain corresponding homogeneous
ball Banach fractional Sobolev spaces based on these aforementioned spaces. In
particular, when X := Lp, Ẇ s,X reduces to Ẇ s,p in (1.1).

3. The ball Banach fractional Sobolev inequality

In this section, we establish the fractional Sobolev inequality of the ball Ba-
nach fractional Sobolev space, which is called the ball Banach fractional Sobolev
inequality. In order to achieve this, we need the following non-degeneracy as-
sumption.

Assumption II. Let X be a ball Banach function space. We say that X has the
non-collapse property if there exists a positive constant C such that, for any x ∈
Rn, ∥1B(x,1)∥X ≥ C.
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Definition 3.1. Let X be a ball Banach function space. The space MX is defined
to be the set of all functions f ∈M such that, for any ε ∈ (0,∞),∥∥∥1{x∈Rn: | f (x)|>ε}

∥∥∥
X
< ∞.

Having established these basic facts, we focus on the main result of this work,
which is the following embedding theorem.

Theorem 3.2. Let X and α satisfy Assumptions I and II and let

s ∈ (0,min{−α, 1}).

Then there exists a positive constant C such that, for any f ∈MX,

∥ f ∥X α
α+s ≤ C ∥ f ∥Ẇ s,X .

Remark 3.3. Let X := Lp with p ∈ [1,∞) and let α := − n
p . In this case, Assump-

tions I and II obviously hold and hence so does Theorem 3.2, which coincides
with the well-known classical fractional Sobolev inequality (1.2). For this reason
the range of s ∈ (0,min{−α, 1}) in Theorem 3.2 is sharp in general.

To prove Theorem 3.2, we need the following technical lemma.

Lemma 3.4. Let X, α, and s be the same as in Theorem 3.2. Then there exists a
positive constant C such that for any measurable set E ⊂ Rn satisfying ∥1E∥X <

∞ and for any x ∈ E we have∥∥∥∥∥ 1
|x − ·|s−α

1E∁(·)
∥∥∥∥∥

X
≥ C∥1E∥

s
α

X .(3.1)

Proof. We first consider the case that E := B(0, r) with r ∈ (0,∞). From As-
sumption I, we deduce that∥∥∥∥∥ 1

| · |s−α
1B(0,r)∁(·)

∥∥∥∥∥
X
∥1B(0,r)∥

− s
α

X = rs−α
∥∥∥∥∥ 1
|r · |s−α

1B(0,r)∁ (r·)
∥∥∥∥∥

X

∥∥∥1B(0,r) (r·)
∥∥∥− s
α

X

=

∥∥∥∥∥ 1
| · |s−α

1B(0,1)∁(·)
∥∥∥∥∥

x
∥1B(0,1)∥

− s
α

X .

By Assumption I and the fact that s ∈ (0,min{−α, 1}) we have∥∥∥∥∥ 1
| · |s−α

1B(0,1)∁(·)
∥∥∥∥∥

X
≤

∞∑
k=1

∥∥∥∥∥ 1
| · |s−α

1B(0,2k)\B(0,2k−1)(·)
∥∥∥∥∥

X

≤

∞∑
k=1

2(k−1)(α−s)∥1B(0,2k)∥X ∼

∞∑
k=1

2−ks < ∞.

This implies that ∥∥∥∥∥ 1
| · |s−α

1B(0,r)∁(·)
∥∥∥∥∥

X
∥1B(0,r)∥

− s
α

X = C ∈ (0,∞)
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and hence, for any r ∈ (0,∞),∥∥∥∥∥ 1
| · |s−α

1B(0,r)∁(·)
∥∥∥∥∥

X
= C ∥1B(0,r)∥

s
α

X .(3.2)

Now, we claim that, for any r ∈ (0,∞) and x ∈ Rn,∥∥∥∥∥ 1
|x − ·|s−α

1B(x,4r)∁(·)
∥∥∥∥∥

X
≳ ∥1B(x,r)∥

s
α

X .(3.3)

We discuss the following two cases based on the size of |x|.
Case (i): |x| ≥ 2r. In this case, let B(x1, r1) be a ball with r1 := |x|+4r

|x|−r r and

x1 := (|x| + 4r + r1)
x
|x|
=
|x| + 4r
|x| − r

x.

It is easy to show that B(x1, r1) ⊂ B(x, 4r)∁. Combining this, Assumption I, and
|x| ≥ 2r, we obtain∥∥∥∥∥ 1

|x − ·|s−α
1B(x,4r)∁(·)

∥∥∥∥∥
X

∥∥∥1B(x,r)

∥∥∥− s
α

X
≥

∥∥∥∥∥ 1
|x − ·|s−α

1B(x1,r1)(·)
∥∥∥∥∥

X
∥1B(x,r)∥

− s
α

X

≥
1

(4r + 2r1)s−α

(
|x| + 4r
|x| − r

)−α
∥1B(x,r)∥

α−s
α

X

≳ ∥1B( x
r ,1)∥

α−s
α

X .

Using this and Assumption II we conclude that∥∥∥∥∥ 1
|x − ·|s−α

1B(x,4r)∁(·)
∥∥∥∥∥

X
≳ ∥1B(x,r)∥

s
α

X .(3.4)

Case (ii): |x| < 2r. In this case, from Assumptions I and II, we infer that, for
any r ∈ (0,∞),

rα∥1B(x,r)∥X = ∥1B( x
r ,1)∥X ≳ 1 ∼ ∥1B(0,6)∥X = rα∥1B(0,6r)∥X.(3.5)

We observe that B(x, 4r) ⊂ B(0, 6r) and for any y ∈ B(0, 6r)∁ one has 4
3 |y| ≥

|x − y|. By this, (3.2), and (3.5), we find that∥∥∥∥∥ 1
|x − ·|s−α

1B(x,4r)∁(·)
∥∥∥∥∥

X
≳

∥∥∥∥∥ 1
| · |s−α

1B(0,6r)∁(·)
∥∥∥∥∥

X
∼ ∥1B(0,6r)∥

s
α

X ≳ ∥1B(x,r)∥
s
α

X .(3.6)

Combining (3.4) and (3.6), we conclude that the above claim holds.
Next, we show that (3.1) is valid. Let

rs := sup
{
r ∈ [0,∞) : ∥1B(x,r)\E∥X < ∥1E∥X

}
.

If rs = 0, then, for any r ∈ (0,∞), ∥1B(x,r)\E∥X ≥ ∥1E∥X. From this, we deduce that∥∥∥∥∥ 1
|x − ·|s−α

1E∁(·)
∥∥∥∥∥

X
≥

∥∥∥∥∥ 1
|x − ·|s−α

1B(x,r)\E(·)
∥∥∥∥∥

X
≥ rα−s∥1B(x,r)\E∥X

≥ rα−s∥1E∥X → ∞



THE BALL BANACH FRACTIONAL SOBOLEV INEQUALITY 9

as r ∈ (0,∞) and r → 0. This implies that (3.1) holds in this case. If rs > 0, we
first prove that rs < ∞. Indeed, when r ≥ ( 2∥1E∥X

∥1B(0,1)∥X
)−

1
α + |x|, using Minkowski’s

inequality and Assumption I, we find that

∥1B(x,r)\E∥X ≥ ∥1B(x,r)∥X − ∥1E∥X ≥ ∥1B(0,r−|x|)∥X − ∥1E∥X

= (r − |x|)−α∥1B(0,1)∥X − ∥1E∥X ≥ ∥1E∥X.

This implies that

rs ≤

(
2∥1E∥X

∥1B(0,1)∥X

)− 1
α

+ |x| < ∞.

From the definition of rs, we further infer that ∥1B(x, 12 rs)\E∥X < ∥1E∥X and

∥1B(x,2rs)\E∥X ≥ ∥1E∥X.

Using these and (3.3), we conclude that∥∥∥∥∥ 1
|x − ·|s−α

1E∁(·)
∥∥∥∥∥

X
∼

∥∥∥∥∥ 1
|x − ·|s−α

1B(x,2rs)\E(·)
∥∥∥∥∥

X
+

∥∥∥∥∥ 1
|x − ·|s−α

1(B(x,2rs)
⋃

E)∁(·)
∥∥∥∥∥

X

≥
1

|2rs|
s−α ∥1E∥X +

∥∥∥∥∥ 1
|x − ·|s−α

1(B(x,2rs)
⋃

E)∁(·)
∥∥∥∥∥

X

≥

∥∥∥∥∥ 1
|x − ·|s−α

1E\B(x,2rs)(·)
∥∥∥∥∥

X
+

∥∥∥∥∥ 1
|x − ·|s−α

1(B(x,2rs)
⋃

E)∁(·)
∥∥∥∥∥

X

∼

∥∥∥∥∥ 1
|x − ·|s−α

1B(0,2rs)∁(·)
∥∥∥∥∥

X
≳

∥∥∥∥1B(0, 12 rs)

∥∥∥∥ s
α

X

∼

[∥∥∥∥1B(0, 12 rs)\E

∥∥∥∥
X
+

∥∥∥∥1B(0, 12 rs)∩E

∥∥∥∥
X

] s
α

≳ ∥1E∥
s
α

X .

This finishes the proof of Lemma 3.4. □

Now, we prove Theorem 3.2.

Proof of Theorem 3.2. Notice that | | f (x)|−| f (y)| | ≤ | f (x)− f (y)| for any x, y ∈ Rn.
Replacing f with | f |, without loss of generality, we may only consider the case
that f ≥ 0. Fix f ≥ 0 and define Dk := {x ∈ Rn : 2k < f (x) ≤ 2k+1} for any k ∈ Z.
It is easy to prove that

∥ f ∥X ∼

∥∥∥∥∥∥∥∑i∈Z 2i1Di

∥∥∥∥∥∥∥
X

and ∥ f ∥X α
α+s ∼

∥∥∥∥∥∥∥∑i∈Z 2i αα+s 1Di

∥∥∥∥∥∥∥
1+ s
α

X

.(3.7)

Using Lemma 3.4, we conclude that∥∥∥∥∥∥
∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)

=

∥∥∥∥∥∥∥∥∥
∑

i∈Z
|Di |>0

∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

1Di(y)

∥∥∥∥∥∥∥∥∥
X(y)

≳

∥∥∥∥∥∥∥∥∥
∑

i∈Z
|Di |>0

∥∥∥∥∥∥2i1(Di−1∪Di∪Di+1)c(x)
|x − y|s−α

∥∥∥∥∥∥
X(x)

1Di(y)

∥∥∥∥∥∥∥∥∥
X(y)
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≳

∥∥∥∥∥∥∥∥∥
∑

i∈Z
|Di |>0

2i
∥∥∥1Di−1∪Di∪Di+1(x)

∥∥∥ s
α

X(x)
1Di(y)

∥∥∥∥∥∥∥∥∥
X(y)

.

Hence, ∥∥∥∥∥∥
∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)

∥∥∥∥∥∥∥∑k∈Z 2k α
α+s 1Dk

∥∥∥∥∥∥∥
− s
α

X

≳

∥∥∥∥∥∥∥∥∥
∑

i∈Z
|Di |>0

2i

∥∥∥∥∥∥∥∑k∈Z 2k α
α+s 1Dk

∥∥∥∥∥∥∥
− s
α

X

∥∥∥1Di−1∪Di∪Di+1(x)
∥∥∥ s
α

X(x)
1Di(y)

∥∥∥∥∥∥∥∥∥
X(y)

≳

∥∥∥∥∥∥∥∑i∈Z 2i αα+s 1Di

∥∥∥∥∥∥∥
X

,

which, together with (3.7), further implies that∥∥∥∥∥∥
∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)

≳

∥∥∥∥∥∥∥∑i∈Z 2i αα+s 1Di

∥∥∥∥∥∥∥
1+ s
α

X

∼ ∥ f ∥X α
α+s .

This finishes the proof of Theorem 3.2. □

As a corollary of Theorem 3.2, we have the following conclusion.

Corollary 3.5. Let X and α satisfy Assumptions I and II and let

s ∈ (0,min{−α, 1}).

Then there exists a positive constant C such that, for any f ∈ C∞c ,

∥ f ∥X α
α+s ≤ C ∥ f ∥Ẇ s,X .

Proof. Let f ∈ C∞c . Then, for any ε ∈ (0,∞), {x ∈ Rn : | f (x)| > ε} ⊂ supp ( f )
and there exists r ∈ (0,∞) such that supp ( f ) ⊂ B(0, r). From Definition 2.1(ii)
and (iv), we infer that ∥∥∥1{x∈Rn: | f (x)|>ε}

∥∥∥
X
≤

∥∥∥1B(0,r)

∥∥∥
X
< ∞

and hence f ∈MX, which implies C∞c ⊂MX. Combining this and Theorem 3.2,
we complete the proof of Corollary 3.5. □

By this, we have proved that the ball Banach fractional Sobolev inequality
holds for any f ∈ C∞c . To extend the ball Banach fractional Sobolev inequality to
a wider class Ẇ s,X ∩ X

α
α+s requires a considerable amount of additional work; for

this purpose we need the following two technical lemmas.
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Lemma 3.6. Let X and α satisfy Assumptions I and II, s ∈ (0,min{−α, 1}), m ∈
(0,∞), and −∞ < b < a < ∞. Then there exists a positive constant C such that
for any real-valued function f ∈M that satisfies∥∥∥1{x∈Rn: f (x)>a}

∥∥∥
X
> m and

∥∥∥1{x∈Rn: f (x)<b}

∥∥∥
X
> m(3.8)

we have

∥ f ∥Ẇ s,X ≥ Cm
α+s
α (a − b).(3.9)

Proof. Let us fix a real-valued function f ∈M that satisfies (3.8). From Defini-
tion 2.1(iii) and (3.8), we deduce that there exists r ∈ (0,∞) such that∥∥∥1{x∈Rn: f (x)>a}∩B(0,r)

∥∥∥
X
> m and

∥∥∥1{x∈Rn: f (x)<b}∩B(0,r)

∥∥∥
X
> m.(3.10)

Let A1 := {x ∈ B(0, r) : f (x) > 2a/3 + b/3},

A2 := {x ∈ B(0, r) : a/3 + 2b/3 < f (x) ≤ 2a/3 + b/3} ,

and A3 := {x ∈ B(0, r) : f (x) ≤ a/3 + 2b/3}. For any measurable set E ⊂ B(0, r)
and x ∈ E, let

r(E)
x := sup

{
rs ∈ [0,∞) :

∥∥∥1[B(0,r)∩B(x,rs)]\E

∥∥∥
X
< ∥1E∥X

}
.(3.11)

For any i ∈ {1, 2, 3}, we define ri := sup{r(Ai)
x : x ∈ Ai}.

If min{r1, r3} >
1
8r, then there exist x1 ∈ A1 satisfying r(A1)

x1 >
1
8r and x3 ∈ A3

satisfying r(A3)
x3 >

1
8r. It is easy to show that there exists x∗i such that B(x∗i ,

1
16r) ⊂

B(xi,
1
8r) ∩ B(0, r) for any i ∈ {1, 3}. By this, (3.11), the definition of A3, (3.10),

Assumptions I and II, we conclude that∥∥∥∥∥∥
∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)

(3.12)

≥

∥∥∥∥∥∥
∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

1A1(x)
∥∥∥∥∥

X(x)
1A3(y)

∥∥∥∥∥∥
X(y)

≳
a − b
rs−α

∥∥∥∥1B(x1,
1
8 r)∩B(0,r)

∥∥∥∥
X

∥∥∥∥1B(x3,
1
8 r)∩B(0,r)

∥∥∥∥− s
α

X

∥∥∥1A3

∥∥∥ α+s
α

X

≥
a − b
rs−α

∥∥∥∥1B(x∗1,
1
16 r)

∥∥∥∥
X

∥∥∥∥1B(x∗3,
1
16 r)

∥∥∥∥− s
α

X

∥∥∥1{x∈Rn: f (x)<b}∩B(0,r)

∥∥∥ α+s
α

X

≳ m
α+s
α (a − b)

∥∥∥∥1B( 16
r x∗1,1)

∥∥∥∥
X

∥∥∥∥1B( 16
r x∗3,1)

∥∥∥∥− s
α

X
≳ m

α+s
α (a − b).

If min{r1, r3} ≤
1
8r, without loss of generality, we may assume r1 ≤

1
8r. We

first claim that, for any x ∈ B(0, r) and r̃ ≤ 1
8r,∥∥∥∥∥ 1

|x − ·|s−α
1B(0,r)\B(x,2r̃)(·)

∥∥∥∥∥
X
≳

∥∥∥∥1B(0,r)∩B(x, 12 r̃)

∥∥∥∥ s
α

X
.(3.13)

To prove this, we consider the following two cases for the size of |x|.



12 Y. CHEN, L. GRAFAKOS, D. YANG, AND W. YUAN

Case (i): |x| ≥ 4r̃. In this case, let r1 := |x|−2r̃
|x|+r̃ r̃ and

x1 := (|x| − 2r̃ − r1)
x
|x|
=
|x| − 2r̃
|x| + r̃

x.

It is easy to show B(x1, r1) ⊂ B(0, r) \ B(x, 2r̃). Combining this and Assumption
I, we obtain∥∥∥∥∥ 1

|x − ·|s−α
1B(0,r)\B(x,2r̃)(·)

∥∥∥∥∥
X

∥∥∥∥1B(0,r)∩B(x, 12 r̃)

∥∥∥∥− s
α

X

≥

∥∥∥∥∥ 1
|x − ·|s−α

1B(x1,r1)(·)
∥∥∥∥∥

X

∥∥∥∥1B(0,r)∩B(x, 12 r̃)

∥∥∥∥− s
α

X

≥
1

(r̃ + 2r1)s−α

(
|x| − 2r̃
|x| + r̃

)−α ∥∥∥1B(x,r̃)

∥∥∥
X

∥∥∥∥1B(0,r)∩B(x, 12 r̃)

∥∥∥∥− s
α

X

≳
1

r̃s−α

∥∥∥1B(x,r̃)

∥∥∥
X

∥∥∥∥∥∥1
B(
|x|− 1

4 r̃
|x| x, 14 r̃)

∥∥∥∥∥∥−
s
α

X

≳
∥∥∥1B( x

r̃ ,1)

∥∥∥
X

∥∥∥∥1B( 4|x|−r̃
|x|r̃ x,1)

∥∥∥∥− s
α

X
.

By this and Assumption II, we conclude that (3.13) holds in this case.
Case (ii): |x| < 4r̃. In this case, from r̃ ≤ 1

8r and Assumption I, we deduce that∥∥∥∥∥ 1
| · |s−α

1B(0,r)\B(0,6r̃)(·)
∥∥∥∥∥

X
∥1B(0,6r̃)∥

− s
α

X(3.14)

≥

∥∥∥∥∥ 1
| · |s−α

1B(0,8r̃)\B(0,6r̃)(·)
∥∥∥∥∥

X
∥1B(0,6r̃)∥

− s
α

X

=

∥∥∥∥∥ 1
| · |s−α

1B(0, 43 )\B(0,1)(·)
∥∥∥∥∥

X
∥1B(0,1)∥

− s
α

X > 0.

It is easy to prove that B(x, 2r̃) ⊂ B(0, 6r̃) and, for any y ∈ B(0, 6r̃)∁, 5
3 |y| ≥ |x−y|.

By this, (3.14), and an argument similar to that used in the estimation of (3.5),
we find that ∥∥∥∥∥ 1

|x − ·|s−α
1B(0,r)\B(x,2r̃)(·)

∥∥∥∥∥
X
≳

∥∥∥∥∥ 1
| · |s−α

1B(0,r)\B(0,6r̃)(·)
∥∥∥∥∥

X

≳ ∥1B(0,6r̃)∥
s
α

X ≳ ∥1B(x, 12 r̃)∥
s
α

X .

This shows (3.13) in this case. Altogether, we conclude that the above claim
holds.

By (3.11) and (3.13), we find that, for any measurable set E ⊂ B(0, r) and any
x ∈ E satisfying r(E)

x ∈ (0, 1
8r),∥∥∥∥∥ 1

|x − ·|s−α
1B(0,r)\E(·)

∥∥∥∥∥
X

(3.15)

∼

∥∥∥∥∥ 1
|x − ·|s−α

1B(0,r)\[E∪B(x,2r(E)
x )](·)

∥∥∥∥∥
X
+

∥∥∥∥∥ 1
|x − ·|s−α

1[B(0,r)∩B(x,2r(E)
x )]\E(·)

∥∥∥∥∥
X

≥

∥∥∥∥∥ 1
|x − ·|s−α

1B(0,r)\[E∪B(x,2r(E)
x )](·)

∥∥∥∥∥
X
+

∥∥∥∥∥ 1
|x − ·|s−α

1E\B(x,2r(E)
x )(·)

∥∥∥∥∥
X

∼

∥∥∥∥∥ 1
|x − ·|s−α

1B(0,r)\B(x,2r(E)
x )(·)

∥∥∥∥∥
X
≳

∥∥∥∥1B(0,r)∩B(x, 12 r(E)
x )

∥∥∥∥ s
α

X
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∼

{∥∥∥∥1B(0,r)∩B(x, 12 r(E)
x )∩E

∥∥∥∥
X
+

∥∥∥∥1B(0,r)∩B(x, 12 r(E)
x )\E

∥∥∥∥
X

} s
α

≳ ∥1E∥
s
α

X .

Let g := ( f − 2a/3 − b/3)+. Here and thereafter, for any a ∈ R, we let a+ :=
max{a, 0}. It is easy to prove that, for any x, y ∈ Rn, | f (x) − f (y)| ≥ |g(x) − g(y)|
and hence ∥∥∥∥∥∥

∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)

≥

∥∥∥∥∥∥
∥∥∥∥∥ |g(x) − g(y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)

.(3.16)

Let Dk := {x ∈ B(0, r) : 2k < g(x) ≤ 2k+1} for any k ∈ Z. By standard arguments
we have ∥∥∥g1B(0,r)

∥∥∥
X
∼

∥∥∥∥∥∥∥∑i∈Z 2i1Di

∥∥∥∥∥∥∥
X

and
∥∥∥g1B(0,r)

∥∥∥
X
α
α+s
∼

∥∥∥∥∥∥∥∑i∈Z 2i αα+s 1Di

∥∥∥∥∥∥∥
1+ s
α

X

.(3.17)

From the assumption that r1 ≤
1
8r, we deduce that, for any i ∈ Z and any x ∈

Di−1 ∪ Di ∪ Di+1, r(Di−1∪Di∪Di+1)
x ∈ (0, 1

8r]. Using this and (3.15), we conclude that∥∥∥∥∥∥
∥∥∥∥∥ |g(x) − g(y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)

≥

∥∥∥∥∥∥∥∑i∈Z
∥∥∥∥∥ |g(x) − g(y)|
|x − y|s−α

∥∥∥∥∥
X(x)

1Di(y)

∥∥∥∥∥∥∥
X(y)

≳

∥∥∥∥∥∥∥∥∥
∑

i∈Z
|Di |>0

∥∥∥∥∥∥2i1B(0,r)\(Di−1∪Di∪Di+1)(x)
|x − y|s−α

∥∥∥∥∥∥
X(x)

1Di(y)

∥∥∥∥∥∥∥∥∥
X(y)

≳

∥∥∥∥∥∥∥∥∥
∑

i∈Z
|Di |>0

2i
∥∥∥1Di−1∪Di∪Di+1(x)

∥∥∥ s
α

X(x)
1Di(y)

∥∥∥∥∥∥∥∥∥
X(y)

.

By this, we immediately have∥∥∥∥∥∥
∥∥∥∥∥ |g(x) − g(y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)

∥∥∥∥∥∥∥∑i∈Z 2i αα+s 1Di

∥∥∥∥∥∥∥
− s
α

X

≳

∥∥∥∥∥∥∥∥∥
∑

i∈Z
|Di |>0

2i

∥∥∥∥∥∥∥∑i∈Z 2i αα+s 1Di(x)

∥∥∥∥∥∥∥
− s
α

X(x)

∥∥∥1Di−1∪Di∪Di+1(x)
∥∥∥ s
α

X(x)
1Di(y)

∥∥∥∥∥∥∥∥∥
X(y)

≳

∥∥∥∥∥∥∥∑i∈Z 2i αα+s 1Di

∥∥∥∥∥∥∥
X

.

Combining this, (3.16), (3.17), and (3.10), we find that∥∥∥∥∥∥
∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)

≥

∥∥∥∥∥∥
∥∥∥∥∥ |g(x) − g(y)|
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)

(3.18)

≳

∥∥∥∥∥∥∥∑i∈Z 2i αα+s 1Di

∥∥∥∥∥∥∥
1+ s
α

X

∼
∥∥∥g1B(0,r)

∥∥∥
X
α
α+s

≳ (a − b)
∥∥∥1B(0,r)∩{x∈Rn: f (x)>a}

∥∥∥ α+s
α

X
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≳ m
α+s
α (a − b),

thus, (3.9) also holds in Case (ii). Now, (3.12) and (3.18) complete the proof of
Lemma 3.6. □

Lemma 3.7. Let f ∈ Ẇ s,X. Then there exists a constant C ∈ C such that f −C ∈
MX.

Proof. Without loss of generality, we may assume that f is a real-valued func-
tion, otherwise we can consider the real part and the imaginary part of f sepa-
rately. Let

I := sup
{
λ ∈ R :

∥∥∥1{x∈Rn: f (x)≥λ}

∥∥∥
X
= ∞

}
and

i := inf
{
λ ∈ R :

∥∥∥1{x∈Rn: f (x)≤λ}

∥∥∥
X
= ∞

}
.

We first prove that I = i. Assume that I < i, and hence there exists λ1 ∈ (I, i). By
Remark 2.7 and the definitions of I and i, we conclude that

∞ = ∥1Rn∥X ≤
∥∥∥1{x∈Rn: f (x)≥λ1}

∥∥∥
X
+

∥∥∥1{x∈Rn: f (x)≤λ1}

∥∥∥
X
< ∞,

which is a contradiction. Assume that I > i and then there exist constants λ2 and
λ3 satisfying i < λ2 < λ3 < I. By the definitions of I and i, we have∥∥∥1{x∈Rn: f (x)>λ3}

∥∥∥
X
= ∞ =

∥∥∥1{x∈Rn: f (x)<λ2}

∥∥∥
X
.

From this and Lemma 3.6, we infer that, for any m ∈ (0,∞),

∥ f ∥Ẇ s,X ≥ Cm
α+s
α (λ3 − λ2),(3.19)

where C is the same as in (3.9). By the arbitrariness of m, we conclude that (3.19)
contradicts the assumption that f ∈ Ẇ s,X. This shows I = i.

Now, we prove that I ∈ R. In order to show this, we assume that I = ∞ = i
or I = −∞ = i and we argue by contradiction. We only consider the first case
because the argument for the second case is similar. By Definition 2.1(iii) and
Remark 2.7, we conclude that

lim
λ→∞

∥∥∥1{x∈Rn: f (x)<λ}

∥∥∥
X
= ∥1Rn∥X = ∞.

From this, we deduce that there exists a constant λ ∈ (−∞,∞) such that, for any
m ∈ (0,∞), ∥∥∥1{x∈Rn: f (x)<λ}

∥∥∥
X
> m.(3.20)

Then, using the definition of i, we find that ∥1{x∈Rn: f (x)≤λ}∥X < ∞ and

∥1{x∈Rn: f (x)≤λ+1}∥X < ∞

and hence

∥1{x∈Rn: f (x)>λ+1}∥X ≥ ∥1Rn∥X − ∥1{x∈Rn: f (x)≤λ+1}∥X = ∞.(3.21)
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By (3.20), (3.21), and Lemma 3.6, we conclude that for any s ∈ (0,min{−α, 1})
and m ∈ (0,∞) we have ∥ f ∥Ẇ s,X ≳ m

α+s
α . From the arbitrariness of m, we in-

fer that ∥ f ∥Ẇ s,X = ∞, which contradicts the assumption that f ∈ Ẇ s,X. Thus,
I = i ∈ (−∞,∞). By the definitions of i and I, we obtain, for any ε ∈ (0,∞),
∥1{x∈Rn: | f (x)−I|>ε}∥X < ∞, which completes the proof of Lemma 3.7. □

Using the above lemmas, we conclude the following corollary.

Corollary 3.8. Let X and α satisfy Assumptions I and II and let

s ∈ (0,min{−α, 1}).

Then there exists a positive constant C̃ such that for any f ∈ Ẇ s,X ∩X
α
α+s we have

∥ f ∥X α
α+s ≤ C̃∥ f ∥Ẇ s,X .

Proof. Let f ∈ Ẇ s,X ∩X
α
α+s . From Lemma 3.7, there exists a constant C ∈ C such

that, for any ε ∈ (0,∞), ∥1{x∈Rn: | f (x)−C|>ε}∥X < ∞, that is, f − C ∈MX. Assuming
C , 0 and letting ε := |C|2 , we obtain∥∥∥∥1

{x∈Rn: | f (x)−C|> |C|2 }

∥∥∥∥
X
< ∞.(3.22)

On the other hand, using f ∈ X
α
α+s , we find that∥∥∥∥1

{x∈Rn: | f (x)|> |C|2 }

∥∥∥∥
X
≤

(
2
|C|
∥ f ∥X α

α+s

) α
α+s

< ∞.(3.23)

By Remark 2.7, (3.22), and (3.23), we conclude that

∞ = ∥1Rn∥X ≤

∥∥∥∥1
{x∈Rn: | f (x)−C|> |C|2 }

∥∥∥∥
X
+

∥∥∥∥1
{x∈Rn: | f (x)|> |C|2 }

∥∥∥∥
X
< ∞,

which is a contradiction. Thus, C = 0 and f ∈MX, which implies Ẇ s,X ∩ X
α
α+s ⊂

MX. Combining this and Theorem 3.2, we then complete the proof of Corollary
3.8. □

4. Closure of C∞c with respect to ∥ · ∥Ẇ s,X

In this section, we characterize the closure of C∞c with respect to ∥ · ∥Ẇ s,X .
Notice that, for any C ∈ C, ∥ f + C∥Ẇ s,X = ∥ f ∥Ẇ s,X . Thus, it makes sense to define
the space of equivalence classes

Ds,X :=
{
[ f ] : f ∈ C∞c

∥·∥Ẇ s,X
}

with the norm ∥ [ f ] ∥Ds,X := ∥ f ∥Ẇ s,X , where [ f ] := { f +C : C ∈ C}.
Next, we show the spaceDs,X is identified with Ẇ s,X∩X

α
α+s . This identification

relies on certain natural assumptions that are valid on most important examples
of ball Banach function spaces.

Assumption III. Let X and α satisfy Assumption I and let s ∈ (0,min{−α, 1}).
Assume that
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(i) X has an absolutely continuous norm (see Definition 2.6);
(ii) there exists a positive constant C such that, for any r ∈ (0,∞) and f ∈

M (Rn × Rn) satisfying ∥ ∥ f (x, y)∥X(x)∥X(y) < ∞,∥∥∥∥∥∥∥
∥∥∥∥∥∥
?

B(0,r)
f (x − z, y − z) dz

∥∥∥∥∥∥
X(x)

∥∥∥∥∥∥∥
X(y)

≤ C
∥∥∥∥ f (x, y)∥X(x)

∥∥∥
X(y)

;

(iii) there exists a positive constant C such that, for any x ∈ B(0, 1),∥∥∥∥∥ 1B(x,1)(·)
|x − ·|s−α−1

∥∥∥∥∥
X
< C.

Theorem 4.1. Let X and α satisfy Assumption I, s ∈ (0,min{−α, 1}), and X also
satisfy Assumptions II and III. Then there exists a linear isometric isomorphism

I : Ds,X → Ẇ s,X ∩ X
α
α+s .

In other words, the spaceDs,X is identified with Ẇ s,X ∩ X
α
α+s .

Remark 4.2. Let X := Lp with p ∈ [1,∞) and let α := − n
p . In this case, Assump-

tions I, II, and III hold and hence so does Theorem 4.1, which coincides with
[11, Theorem 3.1].

The proof of Theorem 4.1 is based on the following technical lemmas.

Lemma 4.3. Let X and α satisfy Assumption I and let s ∈ (0,min{−α, 1}). Then
Ẇ s,X contains C∞c if and only if X satisfies∥∥∥∥∥∥∥

∥∥∥∥∥∥ 1B(y,1)(x)
|x − y|s−α−1

∥∥∥∥∥∥
X(x)

1B(0,1)(y)

∥∥∥∥∥∥∥
X(y)

< ∞.(4.1)

Proof. We first show the sufficiency. Assume that (4.1) holds. Let f ∈ C∞c sat-
isfy supp ( f ) ⊂ B(0, r) with r ∈ (0,∞). From this, Assumption I, and s ∈
(0,min{−α, 1}), we infer that, for any y ∈ B(0, 2r),∥∥∥∥∥ | f (·) − f (y)|

| · −y|s−α

∥∥∥∥∥
X

(4.2)

≤

∥∥∥∥∥ | f (·) − f (y)|
| · −y|s−α

1B(0,4r)

∥∥∥∥∥
X
+

∞∑
k=1

∥∥∥∥∥ | f (·) − f (y)|
| · −y|s−α

1B(0,2k+2r)\B(0,2k+1r)

∥∥∥∥∥
X

≲ ∥∇ f ∥L∞
∥∥∥∥∥ 1B(0,4r)(·)
| · −y|s−α−1

∥∥∥∥∥
X
+ ∥ f ∥L∞

∞∑
k=1

∥∥∥∥∥∥1B(0,2k+2r)\B(0,2k+1r)(·)
| · |s−α

∥∥∥∥∥∥
X

≲

∥∥∥∥∥∥ 1B(y,1)(·)
| · −y|s−α−1

∥∥∥∥∥∥
X

+

∥∥∥∥∥∥1B(0,4r)\B(y,1)(·)
| · −y|s−α−1

∥∥∥∥∥∥
X

+

∞∑
k=1

2−sk
∥∥∥1B(0,8r)\B(0,4r)

∥∥∥
X

≲

∥∥∥∥∥∥ 1B(y,1)(·)
| · −y|s−α−1

∥∥∥∥∥∥
X

+ ∥1B(0,4r)∥ +

∞∑
k=1

2−sk
∥∥∥1B(0,8r)\B(0,4r)

∥∥∥
X
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≲

∥∥∥∥∥∥ 1B(y,1)(·)
| · −y|s−α−1

∥∥∥∥∥∥
X

+ 1

and, by the support condition of f , for any y ∈ B(0, 2r)∁,∥∥∥∥∥ | f (·) − f (y)|
| · −y|s−α

∥∥∥∥∥
X
≲

1
|y|s−α

∥ f ∥L∞ ≲
1
|y|s−α

.(4.3)

Using Assumption I, we find that∥∥∥∥∥∥∥
∥∥∥∥∥∥ 1B(y,1)(x)
|x − y|s−α−1

∥∥∥∥∥∥
X(x)

1B(0,2r)(y)

∥∥∥∥∥∥∥
X(y)

= (2r)−2α

∥∥∥∥∥∥∥
∥∥∥∥∥∥ 1B(2ry,1)(2rx)
|2rx − 2ry|s−α−1

∥∥∥∥∥∥
X(x)

1B(0,2r)(2ry)

∥∥∥∥∥∥∥
X(y)

= (2r)1−s−α

∥∥∥∥∥∥∥
∥∥∥∥∥∥1B(y,(2r)−1)(x)
|x − y|s−α−1

∥∥∥∥∥∥
X(x)

1B(0,1)(y)

∥∥∥∥∥∥∥
X(y)

.

Combining this, (4.2), (4.3), Assumption I, (4.1), and s ∈ (0,min{−α, 1}), we
conclude that

∥ f ∥Ẇ s,X ≤

∥∥∥∥∥∥
∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

1B(0,2r)(y)

∥∥∥∥∥∥
X(y)

+

∥∥∥∥∥∥
∥∥∥∥∥ | f (x) − f (y)|
|x − y|s−α

∥∥∥∥∥
X(x)

1B(0,2r)∁(y)

∥∥∥∥∥∥
X(y)

≲

∥∥∥∥∥∥∥
∥∥∥∥∥∥ 1B(y,1)(x)
|x − y|s−α−1

∥∥∥∥∥∥
X(x)

1B(0,2r)(y)

∥∥∥∥∥∥∥
X(y)

+ ∥1B(0,2r)∥X(y)

+

∞∑
k=1

∥∥∥∥∥∥1B(0,2k+1r)\B(0,2kr)(y)
|y|s−α

∥∥∥∥∥∥
X(y)

≲ max
{
1, (2r)1−s−α

} ∥∥∥∥∥∥∥
∥∥∥∥∥∥ 1B(y,1)(x)
|x − y|s−α−1

∥∥∥∥∥∥
X(x)

1B(0,1)(y)

∥∥∥∥∥∥∥
X(y)

+
∥∥∥1B(0,2r)

∥∥∥
X(y)

+

∞∑
k=1

2−sk
∥∥∥1B(0,4r)\B(0,2r)(x)

∥∥∥
X(x)

< ∞.

This finishes the proof of the sufficiency.
Now we prove the necessity. Let e⃗i := (0, . . . , 0, 1, 0, . . . , 0) (the ith entry is

1 and the other entries are 0) for any i ∈ {1, . . . , n}. We first claim that, for any
x, y ∈ B(0, 2),

max
{∣∣∣ ∣∣∣x − 4ne⃗i

∣∣∣ − ∣∣∣y − 4ne⃗i

∣∣∣ ∣∣∣ : i ∈ {1, . . . , n}
}
≳ |x − y| .

To see this, let x = (x1, . . . , xn) and y = (y1, . . . , yn). Assume that

|x1 − y1| = max {|xi − yi| : i ∈ {1, . . . , n}}
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and x1 < y1. By x, y ∈ B(0, 2), we find that∣∣∣ ∣∣∣x − 4ne⃗1

∣∣∣ − ∣∣∣y − 4ne⃗1

∣∣∣ ∣∣∣(4.4)

≥

(4n − x1)2 +

n∑
i=2

x2
i


1
2

−

(4n − y1)2 +

n∑
i=2

y2
i


1
2

=
8n(y1 − x1) +

∑n
i=1(xi + yi)(xi − yi)

[(4n − x1)2 +
∑n

i=2 x2
i ]

1
2 + [(4n − y1)2 +

∑n
i=2 y2

i ]
1
2

≥
8n(y1 − x1) − 4n(y1 − x1)

16n
≥

y1 − x1

4
≥
|x − y|
4
√

n
.

This shows that the above claim holds. For any i ∈ {1, . . . , n}, let fi ∈ C∞c ⊂
Ẇ s,X satisfying fi(x) = |x − 4ne⃗i| in B(0, 2). By (4.4) and the definition of fi, we
conclude that∥∥∥∥∥∥∥

∥∥∥∥∥∥ 1B(y,1)(x)
|x − y|s−α−1

∥∥∥∥∥∥
X(x)

1B(0,1)(y)

∥∥∥∥∥∥∥
X(y)

≲

∥∥∥∥∥∥∥
∥∥∥∥∥∥1B(y,1)(x)

∑n
i=1 | |x − 4ne⃗i| − |y − 4ne⃗i| |

|x − y|s−α

∥∥∥∥∥∥
X(x)

1B(0,1)(y)

∥∥∥∥∥∥∥
X(y)

≤

n∑
i=1

∥ fi∥Ẇ s,X < ∞.

This finishes the proof of the necessity and hence the proof of Lemma 4.3. □

The following corollary is a direct consequence of Lemma 4.3.

Corollary 4.4. Let X, α, and s satisfy Assumption III(iii). Then C∞c ⊂ Ẇ s,X.

Lemma 4.5. Let X be a ball Banach function space satisfying Assumption III(i)
and let f ∈ M (Rn × Rn) satisfy ∥∥ f (x, y)∥X(x)∥X(y) < ∞. Then there exists a
sequence of functions, { fm}m∈N ⊂ Cc(Rn × Rn), such that

lim
m→∞

∥∥∥ ∥ fm(x, y) − f (x, y)∥X(x)

∥∥∥
X(y)
= 0.

Proof. From Assumption III(i), we deduce that∥∥∥∥∥∥∥ f (x, y)1B(0, j)∁(x)1B(0, j)∁(y)
∥∥∥

X(x)

∥∥∥∥
X(y)
≤

∥∥∥∥∥∥∥ f (x, y)1B(0, j)∁(y)
∥∥∥

X(x)

∥∥∥∥
X(y)
→ 0

as j→ ∞. Notice that, for almost every y ∈ Rn, {x ∈ Rn : f (x, y) > N} converges
to a set of zero Lebesgue measure as N → ∞. By this and Assumption III(i), we
find that, for almost every y ∈ Rn,∥∥∥ f (x, y)1{x∈Rn: f (x,y)>N}

∥∥∥
X(x)
→ 0

as N → ∞, which, together with [49, Definition 3.11 and Proposition 3.12],
further implies that∥∥∥∥∥∥∥ f (x, y)1{(x,y): f (x,y)>N}

∥∥∥
X(x)

∥∥∥∥
X(y)
=

∥∥∥∥∥∥∥ f (x, y)1{x∈Rn: f (x,y)>N}

∥∥∥
X(x)

∥∥∥∥
X(y)
→ 0
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as N → ∞. Combining the above observations, we conclude that, for any ε ∈
(0,∞), there exists a bounded function g supported in a compact subset D ⊂
(Rn × Rn) such that ∥∥∥∥g(x, y) − f (x, y)∥X(x)

∥∥∥
X(y)
< ε.(4.5)

Using Lusin’s theorem, we conclude that there exists a sequence of bounded
continuous functions, {hk(x, y)}k∈N, supported in D such that

lim
k→∞

[g(x, y) − hk(x, y)] = 0

almost everywhere on Rn ×Rn. From Assumption III(i) and [42, Lemma 5.6.14],
we deduce that, for almost every y ∈ Rn,

lim
k→∞
∥g(x, y) − hk(x, y)∥X(x) = 0.

Then, by this, Assumption III(i), and [49, Definition 3.11 and Proposition 3.12],
we find that

lim
k→∞

∥∥∥∥g(x, y) − hk(x, y)∥X(x)

∥∥∥
X(y)
= 0.(4.6)

From (4.5) and (4.6), we conclude that, for any ε ∈ (0,∞), there exists a bounded
continuous functions h(x, y) supported in a set of finite measure D ⊂ (Rn × Rn)
such that ∥∥∥ ∥h(x, y) − f (x, y)∥X(x)

∥∥∥
X(y)
< ε.

This finishes the proof of Lemma 4.5. □

Lemma 4.6. Let X and α satisfy Assumption I, s ∈ (0,min{−α, 1}), and X also
satisfy Assumptions II and III. Let u ∈M satisfy ∥u∥Ẇ s,X < ∞. Then there exists
a sequence of functions, {um}m∈N ⊂ C∞, such that

lim
m→∞
∥u − um∥Ẇ s,X = 0.

Proof. Let ρ ∈ C∞c be such that supp (ρ) ⊂ B(0, 1) and
∫
Rn ρ(x)dx = 1, and define

ρm(·) := mnρ(m·) for any m ∈ N. For any x, y ∈ Rn, let

f (x, y) :=


u(x) − u(y)
|x − y|s−α

, x , y,

0, x = y.

By Lemma 4.5, we find that, for any ε ∈ (0,∞), there exists g ∈ Cc(Rn×Rn) such
that ∥∥∥ ∥ f (x, y) − g(x, y)∥X(x)

∥∥∥
X(y)
< ε.(4.7)

From the definition of ∥ · ∥Ẇ s,X , we infer that, for any u ∈ Ẇ s,X,

∥u ∗ ρm − u∥Ẇ s,X(4.8)
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=

∥∥∥∥∥∥
∥∥∥∥∥u ∗ ρm(x) − u ∗ ρm(y) − [u(x) − u(y)]

|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)

=

∥∥∥∥∥∥
∥∥∥∥∥∫
Rn

u(x − z) − u(y − z)
|x − y|s−α

ρm(z) dz −
u(x) − u(y)
|x − y|s−α

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)

=

∥∥∥∥∥∥
∥∥∥∥∥∫
Rn

f (x − z, y − z)ρm(z) dz − f (x, y)
∥∥∥∥∥

X(x)

∥∥∥∥∥∥
X(y)

≤
∥∥∥∥ f (x, y) − g(x, y)∥X(x)

∥∥∥
X(y)

+

∥∥∥∥∥∥
∥∥∥∥∥∫
Rn

g(x − z, y − z)ρm(z) dz − g(x, y)
∥∥∥∥∥

X(x)

∥∥∥∥∥∥
X(y)

+

∥∥∥∥∥∥
∥∥∥∥∥∫
Rn
| f (x − z, y − z) − g(x − z, y − z)| ρm(z) dz

∥∥∥∥∥
X(x)

∥∥∥∥∥∥
X(y)

=: I1 + I2 + I3.

Notice that g is uniformly continuous and there exists R ∈ (0,∞) such that
supp (g) ⊂ B(0,R) × B(0,R). This, combined with the definition of ρm, further
implies that

I2 ≤ sup
(x,y)∈B(0,R+1)×B(0,R+1)

(z,w)∈B(0,m−1)×B(0,m−1)

|g(x, y) − g(x − z, y − w)|(4.9)

×

∥∥∥∥∥∥∥1B(0,R+1)(x)1B(0,R+1)(y)
∥∥∥

X(x)

∥∥∥∥
X(y)

→ 0

as m→ ∞. Now, we estimate I3. Using Assumption III(ii), we conclude that

I3 ≲

∥∥∥∥∥∥∥
∥∥∥∥∥∥
?

B(0,m−1)
|( f − g) (x − z, y − z)| dz

∥∥∥∥∥∥
X(x)

∥∥∥∥∥∥∥
X(y)

(4.10)

≲
∥∥∥∥( f − g)(x, y)∥X(x)

∥∥∥
X(y)
< ε.

Combining (4.8), (4.7), (4.9), and (4.10), we find that ∥u ∗ ρm − u∥Ẇ s,X → 0 as
m→ ∞, which completes the proof Lemma 4.6. □

The following Lorentz–Luxembourg lemma can be found in [80, Lemma
2.6].

Lemma 4.7. Let X be a ball Banach function space. Then X coincides with its
second associate space X′′. In other words, a function f belongs to X if and only
if it belongs to X′′ and, in that case, ∥ f ∥X = ∥ f ∥X′′ .

Lemma 4.8. Let X be a ball Banach function space and p, p′ ∈ (1,∞) satisfy
1
p +

1
p′ = 1. Then, for any f ∈ Xp and g ∈ Xp′ , ∥ f g∥X ≤ ∥ f ∥Xp∥g∥Xp′ .
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Proof. By Lemma 4.7, the definitions of X and X′, Hölder’s inequality, and the
definitions of Xp and Xp′ , we conclude that, for any f ∈ Xp and g ∈ Xp′ ,

∥ f g∥X = sup
∥h∥X′=1

∫
Rn
| f (x)g(x)h(x)| dx

≤ sup
∥h∥X′=1

[∫
Rn
| f (x)|p |h(x)| dx

] 1
p
[∫
Rn
| f (x)|p

′

|h(x)| dx
] 1

p′

≤ sup
∥h∥X′=1

[∫
Rn
| f (x)|p |h(x)| dx

] 1
p

sup
∥h∥X′=1

[∫
Rn
| f (x)|p

′

|h(x)| dx
] 1

p′

= ∥ f ∥Xp∥g∥Xp′ .

This finishes the proof of Lemma 4.8. □

Next, we prove Theorem 4.1.

Proof of Theorem 4.1. Let [u] ∈ Ds,X. By the definition of Ds,X, we find that
there exists {um}m∈N ⊂ C∞c converging to u with respect to the quasi-norm ∥ ·
∥Ẇ s,X . Using Assumption III(iii) and Corollary 4.4, we obtain {um}m∈N ⊂ Ẇ s,X

and hence u ∈ Ẇ s,X. By Corollary 3.5, we conclude that {um}m∈N ⊂ X
α
α+s . From

Lemma 3.7, we infer that there exists a constant C̃ ∈ C such that, for any ε ∈
(0,∞), ∥1{x∈Rn: |u(x)−C̃|>ε}∥X < ∞. Let i ∈ N. Using {um}m∈N ⊂ C∞c , we find that
∥1{x∈Rn: |u(x)−C̃−ui(x)|>ε}∥X < ∞ and hence u − C̃ − ui ∈MX. From Theorem 3.2, we
deduce that ∥∥∥u − C̃ − ui

∥∥∥
X
α
α+s
≤

∥∥∥u − C̃ − ui

∥∥∥
Ẇ s,X ,

which, together with ui ∈ X
α
α+s , further implies that u − C̃ ∈ X

α
α+s . We then define

I([u]) := u − C̃.

Using the definition of [u], we conclude that I is injective.
Now, we show that I is surjective. Let u ∈ Ẇ s,X∩X

α
α+s and g ∈M satisfy that

g ≡ 1 on B(0, 1), g ≡ 0 on B(0, 2)∁, and g(x) := 2−|x| for any x ∈ B(0, 2)\B(0, 1).
Let g j(·) := g( ·j ) for any j ∈ N. Next, we prove that

lim
j→∞
∥u − g ju∥Ẇ s,X = 0.(4.11)

It is easy to show that, for any j ∈ N and x, y ∈ Rn,

|[1 − g j(x)]u(x) − [1 − g j(y)]u(y)| ≤ |u(x) − u(y)||1 − g j(x)| + |g j(x) − g j(y)||u(y)|

and hence

∥u − g ju∥Ẇ s,X(4.12)

≤

∥∥∥∥∥∥∥
∥∥∥∥∥∥ |u(x) − u(y)||1 − g j(x)|

|x − y|s−α

∥∥∥∥∥∥
X(x)

∥∥∥∥∥∥∥
X(y)

+

∥∥∥∥∥∥∥
∥∥∥∥∥∥ |g j(x) − g j(y)||u(y)|

|x − y|s−α

∥∥∥∥∥∥
X(x)

∥∥∥∥∥∥∥
X(y)

=: I j + J j.
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We first estimate I j. Form ∥u∥Ẇ s,X < ∞, we deduce that, for almost every
y ∈ Rn, ∥ |u(·)−u(y)|

|·−y|s−α ∥X < ∞. By this, the definition of g j, and Assumption III(i), we
conclude that, for almost every y ∈ Rn,∥∥∥∥∥∥ |u(·) − u(y)||1 − g j(·)|

| · −y|s−α

∥∥∥∥∥∥
X

≤

∥∥∥∥∥∥ |u(·) − u(y)|1B(0, j)∁(·)

| · −y|s−α

∥∥∥∥∥∥
X

→ 0

as j→ ∞. Using this and [49, Definition 3.11 and Proposition 3.12], we obtain

lim
j→∞

I j = 0.(4.13)

This is the desired estimate for I j.
Now, we estimate J j. For any j ∈ N and y ∈ Rn, let

f j(y) :=

∥∥∥∥∥∥ |g j(·) − g j(y)|
| · −y|s−α

∥∥∥∥∥∥
X

.

Using the definition of g j and Assumption I, we conclude that

f j(y) = jα−s

∥∥∥∥∥∥∥ |g( ·j ) − g( y
j )|

| ·j −
y
j |

s−α

∥∥∥∥∥∥∥
X

= j−s

∥∥∥∥∥∥∥ |g(·) − g( y
j )|

| · −
y
j |

s−α

∥∥∥∥∥∥∥
X

=: j−s f
(
y
j

)
.

Next, we claim that, for any β ∈ (1,∞), f = f1 ∈ Xβ. By the definition of g, we
find that, for any y ∈ B(0, 3)∁,

f (y) =
∥∥∥∥∥ |g(·)|
| · −y|s−α

∥∥∥∥∥
X
≲
∥1B(0,2)∥X

ys−α .(4.14)

From the definition of g, Assumptions I and III(iii), and s ∈ (0,min{−α, 1}), we
deduce that, for any y ∈ B(0, 3),

f (y) ≤
∥∥∥∥∥ |g(·) − g(y)|1B(0,4)(·)

| · −y|s−α

∥∥∥∥∥
X
+

∥∥∥∥∥∥ |g(·) − g(y)|1B(0,4)∁(·)

| · −y|s−α

∥∥∥∥∥∥
X

(4.15)

≲

∥∥∥∥∥∥ 1B(y,7)(·)
| · −y|s−α−1

∥∥∥∥∥∥
X

+

∥∥∥∥∥∥1B(0,4)∁(·)

| · |s−α

∥∥∥∥∥∥
X

≤ 7−α
∥∥∥∥∥∥ 1B(y,7)(7·)
|7 · −y|s−α−1

∥∥∥∥∥∥
X

+

∞∑
k=1

∥∥∥∥∥∥1B(0,2k+2)\B(0,2k+1)(·)
| · |s−α

∥∥∥∥∥∥
X

≤ 71−s

∥∥∥∥∥∥ 1B( y
7 ,1)(·)

| · −
y
7 |

s−α−1

∥∥∥∥∥∥
X

+

∞∑
k=1

2−s(k+1)
∥∥∥1B(0,2)\B(0,1)

∥∥∥
X
≲ 1.

Combining (4.14), (4.15), Assumption III(iii), and s ∈ (0,min{−α, 1}), we con-
clude that, for any β ∈ (1,∞),

∥ f ∥Xβ ≤
∥∥∥ f 1B(0,3)

∥∥∥
Xβ
+

∥∥∥ f 1B(0,3)∁
∥∥∥

Xβ

≲
∥∥∥1B(0,3)

∥∥∥
Xβ
+

∥∥∥1B(0,2)

∥∥∥
X

∥∥∥∥∥∥1B(0,3)∁(·)

| · |β(s−α)

∥∥∥∥∥∥
1
β

X

≤
∥∥∥1B(0,3)

∥∥∥
Xβ
+

∥∥∥1B(0,2)

∥∥∥
X

 ∞∑
k=1

3[−βs+(β−1)α]k
∥∥∥1B(0,3)\B(0,1)

∥∥∥
X


1
β

< ∞.
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This proves the above claim.
Let u j(·) := j−s−αu( j·) for any j ∈ N. From the above claim and Assumption

III(i), we infer that, for any ε ∈ (0,∞), there exists δ ∈ (0,∞) such that∥∥∥ f 1B(0,δ)
∥∥∥

X−
α
s
<

ε

2∥u∥X α
α+s

.

Using this, Lemma 4.8, and Assumption I, we conclude that, for any j ∈ N,∥∥∥ f u j1B(0,δ)
∥∥∥

X
≤

∥∥∥ f 1B(0,δ)
∥∥∥

X−
α
s

∥∥∥u j

∥∥∥
X
α
α+s
=

∥∥∥ f 1B(0,δ)
∥∥∥

X−
α
s
∥u∥X α

α+s <
ε

2
.(4.16)

By Assumption III(i), we conclude that there exists N ∈ N such that, for any
j > N, ∥∥∥u1B(0,δ j)∁

∥∥∥
X
α
α+s
<

ε

2∥ f ∥X− αs
.

From this, Lemma 4.8, and Assumption I, we deduce that, for any j > N,∥∥∥ f u j1B(0,δ)∁
∥∥∥

X
≤ ∥ f ∥X− αs

∥∥∥u j1B(0,δ)∁
∥∥∥

X
α
α+s
= ∥ f ∥X− αs

∥∥∥u1B(0,δ j)∁
∥∥∥

X
α
α+s
<
ε

2
.(4.17)

Using Assumption I, (4.16), and (4.17), we find that, for any j > N,∥∥∥ f ju
∥∥∥

X
=

∥∥∥ f u j

∥∥∥
X
≤

∥∥∥ f u j1B(0,δ)∁
∥∥∥

X
+

∥∥∥ f u j1B(0,δ)
∥∥∥

X
< ε.(4.18)

This is the desired estimate for J j. Then, combining (4.12), (4.13), and (4.18),
we conclude that (4.11) holds. From this and Lemma 4.6, we infer that, for any
u ∈ Ẇ s,X ∩ X

α
α+s , there exists a set {u j} j∈N ⊂ C∞c such that

lim
j→∞
∥u − u j∥Ẇ s,X = 0

and hence [u] ∈ Ds,X, which further implies that I is surjective. This finishes the
proof of Theorem 4.1. □

Now, we show that Assumption III(iii) is necessary for ball Banach function
spaces whose quasi-norm is invariant under rotations in some weak sense.

Proposition 4.9. Let X and α satisfy Assumption I and let s ∈ (0,min{−α, 1}).
Assume that there exists a positive constant C such that, for any n × n unitary
matrix A and any f ∈ X,

1
C
∥ f ∥X ≤ ∥ f (A·)∥X ≤ C∥ f ∥X.(4.19)

If X has the property ∥∥∥∥∥∥∥
∥∥∥∥∥∥ 1B(y,1)(x)
|x − y|s−α−1

∥∥∥∥∥∥
X(x)

1B(0,1)(y)

∥∥∥∥∥∥∥
X(y)

< ∞,(4.20)

then X satisfies Assumption III(iii).
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Proof. Assume that Assumption III(iii) fails. Then, for any M ∈ (0,∞), there
exists yM ∈ B(0, 1) such that ∥∥∥∥∥∥ 1B(yM ,1)(·)

| · −yM |
s−α−1

∥∥∥∥∥∥
X

≥ M.(4.21)

By Assumption I and s ∈ (0,min{−α, 1}), we conclude that∥∥∥∥∥1B(0,2)(·)
| · |s−α−1

∥∥∥∥∥
X
≤

∞∑
i=0

2(s−α−1)i
∥∥∥1B(0,2−i+1)\B(0,2−i)

∥∥∥
X

=

∞∑
i=0

2(s−1)i
∥∥∥1B(0,2)\B(0,1)

∥∥∥
X
< ∞.

From this, the obvious estimate that for any x ∈ B(yM, 2|yM |)∁ we have |x− yM | ∼

|x|, and (4.21), we obtain∥∥∥∥∥∥1B(yM ,2|yM |)(·)
| · −yM |

s−α−1

∥∥∥∥∥∥
X

≥

∥∥∥∥∥∥ 1B(yM ,1)(·)
| · −yM |

s−α−1

∥∥∥∥∥∥
X

−

∥∥∥∥∥∥1B(yM ,1)\B(yM ,2|yM |)(·)
| · −yM |

s−α−1

∥∥∥∥∥∥
X

≥

∥∥∥∥∥∥ 1B(yM ,1)(·)
| · −yM |

s−α−1

∥∥∥∥∥∥
X

−

∥∥∥∥∥1B(0,2)(·)
| · |s−α−1

∥∥∥∥∥
X
→ ∞

as M → ∞. This fact together with Assumption I and (4.19) further implies that∥∥∥∥∥∥∥
∥∥∥∥∥∥ 1B(y,1)(x)
|x − y|s−α−1

∥∥∥∥∥∥
X(x)

1B(0,1)(y)

∥∥∥∥∥∥∥
X(y)

≥

∥∥∥∥∥∥∥
∥∥∥∥∥∥ 1B(y,2|y|)(x)
|x − y|s−α−1

∥∥∥∥∥∥
X(x)

1B(0, 12 )(y)

∥∥∥∥∥∥∥
X(y)

=

∥∥∥∥∥∥∥∥
∥∥∥∥∥∥∥ 1B(y,2|y|)(

|y|
|yM |

x)

|
|y|
|yM |

x − y|s−α−1

∥∥∥∥∥∥∥
X(x)

|y|−α

|yM |
−α

1B(0, 12 )(y)

∥∥∥∥∥∥∥∥
X(y)

=

∥∥∥∥∥∥1B(yM ,2|yM |)(·)
| · −yM |

s−α−1

∥∥∥∥∥∥
X

∥∥∥∥∥∥ | · |1−s

|yM |
1−s 1B(0, 12 )(·)

∥∥∥∥∥∥
X

→ ∞

as M → ∞. This contradicts (4.20) and thus Assumption III(iii) must hold. This
finishes the proof of Proposition 4.9. □

5. Applications to specific function spaces

In this section, we verify that our main results are applicable to several impor-
tant examples of ball Banach function spaces, including Morrey spaces (Subsec-
tion 5.1), mixed-norm Lebesgue spaces (Subsection 5.2), Lebesgue spaces with
power weights (Subsection 5.3), Besov–Triebel–Lizorkin–Bourgain–Morrey spaces
(Subsection 5.4), and Lorentz spaces (Subsection 5.5). To the best of our knowl-
edge, all results in this section are new. These applications reveal the extent to
which Sobolev embeddings play a prominent role in function space theory. And
we are certain that many other function spaces fall under the scope of our results.
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To verify that these spaces satisfy some desired assumptions, we need the
following lemma.

Lemma 5.1. Let X and α satisfy Assumption I and let s ∈ (0,min{−α, 1}). As-
sume moreover that X satisfies the following property: there exists a positive
constant C such that, for any f ∈ X and t ∈ Rn,

1
C
∥ f (· + t)∥X ≤ ∥ f ∥X ≤ C ∥ f (· + t)∥X .(5.1)

Then Assumption II and both (ii) and (iii) of Assumption III hold.

Proof. By (5.1), we find that, for any x ∈ Rn, ∥1B(x,1)∥X ∼ ∥1B(0,1)∥X and hence
Assumption II holds. From Minkowski’s inequality and (5.1), we deduce that∥∥∥∥∥∥∥

∥∥∥∥∥∥
?

B(0,r)
f (x − z, y − z) dz

∥∥∥∥∥∥
X(x)

∥∥∥∥∥∥∥
X(y)

≲

?
B(0,r)

∥∥∥∥ f (x − z, y − z)∥X(x)

∥∥∥
X(y)

dz

∼
∥∥∥∥ f (x, y)∥X(x)

∥∥∥
X(y)
.

This implies that Assumption III(ii) holds. Moreover, using (5.1), Assumption I,
and s ∈ (0,min{−α, 1}), we conclude that, for any y ∈ B(0, 1),∥∥∥∥∥∥ 1B(y,1)(·)
| · −y|s−α−1

∥∥∥∥∥∥
X

∼

∥∥∥∥∥1B(0,1)(·)
| · |s−α−1

∥∥∥∥∥
X
≤

∞∑
k=1

2(s−α−1)k
∥∥∥1B(0,2−k+1)\B(0,2−k)

∥∥∥
X

=

∞∑
k=1

2(s−1)k
∥∥∥1B(0,2)\B(0,1)

∥∥∥
X
=

2s−1

1 − 2s−1

∥∥∥1B(0,2)\B(0,1)

∥∥∥
X
= C′ < ∞.

This implies that Assumption III(iii) holds, which then completes the proof of
Lemma 5.1. □

5.1. Morrey Spaces. Recall that the Morrey space Mp
r with 0 < r ≤ p < ∞

was introduced by Morrey [60] in order to study the regularity of solutions to
certain equations. Morrey spaces have many applications in the theory of elliptic
partial differential equations, potential theory, and harmonic analysis; we refer to
[13, 29, 30, 31, 33, 75] and the monographs [1, 66, 67, 78].

Definition 5.2. Let 0 < r ≤ p < ∞. The Morrey space Mp
r is defined to be the

set of all measurable functions f on Rn such that

∥ f ∥Mp
r

:= sup
B∈B
|B|

1
p−

1
r ∥ f ∥Lr(B) < ∞.

The following Sobolev-type embedding is a corollary of Theorem 3.2.

Theorem 5.3. Let 0 < r ≤ p < ∞ and s ∈ (0,min{ np , 1}). Then there exists a
positive constant C such that, for any f ∈ Ẇ s,X∩X

α
α+s with X := Mp

r and α := − n
p ,

sup
B∈B

[
|B|

r
p−1

∫
B
| f (x)|

rn
n−sp dx

] n−sp
rn
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≤ C sup
B1,B2∈B

(|B1||B2|)
1
p−

1
r

{∫
B1

∫
B2

[
| f (x) − f (y)|

|x − y|s+
n
p

]r

dx dy
} 1

r

.

Proof. From the conclusion in [68, p. 87], we infer that Mp
r is a ball Banach

function space. It is easy to show that Assumption I holds with X and α replaced,
respectively, by Mp

r and − n
p . By the definition of Mp

r , we find that, for any x ∈

Rn, ∥1B(x,1)∥Mp
r
= |B(0, 1)|

1
p , which implies that Assumption II holds with X :=

Mp
r . Thus, all the assumptions of Theorem 3.2 with X := Mp

r and α := − n
p are

satisfied. Then, using Theorem 3.2 with X := Mp
r and α := − n

p , we obtain the
desired conclusions, thereby completing the proof of Theorem 5.3. □

Remark 5.4. From [72, Example 5.1], we know that the Morrey space Mp
r has

no absolutely continuous norm if 1 < r < p < ∞. Thus, it is still unknown
whether or not Theorem 4.1 holds with X := Mp

r and α := − n
p .

5.2. Mixed-Norm Lebesgue Spaces. The mixed-norm Lebesgue space L p⃗ was
studied by Benedek and Panzone [6] in 1961, which can be traced back to Hör-
mander [37]. For more studies on mixed-norm Lebesgue spaces, we refer to
[14, 15, 22, 23, 39, 40].

Definition 5.5. Let p⃗ := (p1, . . . , pn) ∈ (0,∞]n. The mixed-norm Lebesgue space
L p⃗ is defined to be the set of all measurable functions f on Rn such that

∥ f ∥L p⃗ :=


∫
R

· · ·

[∫
R

| f (x1, . . . , xn)|p1 dx1

] p2
p1

· · · dxn


1

pn

< ∞

with the usual modifications made when pi = ∞ for some i ∈ {1, . . . , n}.

The following theorem is a corollary of Theorem 3.2.

Theorem 5.6. Let p⃗ := (p1, . . . , pn) ∈ (0,∞]n and s ∈ (0,min{
∑n

i=1
1
pi
, 1}). Then,

for any f ∈ Ẇ s,X ∩ X
α
α+s with X := L p⃗ and α := −

∑n
i=1

1
pi

,


∫
R

· · ·


∫
R

| f (x1, . . . , xn)|

p1
n∑

i=1
1
pi

n∑
i=1

1
pi
−s

dx1


p2
p1

· · · dxn



n∑
i=1

1
pi
−s

pn
n∑

i=1
1
pi

≲


∫
R

· · ·


∫
R


∫
R

· · ·


∫
R

| f (x) − f (y)|p1

|x − y|
(s+

n∑
i=1

1
pi

)p1

dy1


p2
p1

· · · dyn


p1
pn

dx1


p2
p1

· · · dxn



1
pn

with the implicit positive constant independent of f .
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Proof. It is easy to prove that L p⃗ is a ball Banach function space and Assump-
tion I holds with X and α replaced, respectively, by L p⃗ and −

∑n
i=1

1
pi

. By these,
Lemma 5.1, and the translation invariance of L p⃗, we conclude that all the assump-
tions of Theorem 3.2 with X := L p⃗ and α := −

∑n
i=1

1
pi

are satisfied. Then, using
Theorem 3.2 with X := L p⃗ and α := −

∑n
i=1

1
pi

, we obtain the desired conclusions,
thereby completing the proof of Theorem 5.6. □

The following theorem is a corollary of Theorem 4.1.

Theorem 5.7. Let p⃗ := (p1, . . . , pn) ∈ (0,∞)n and s ∈ (0,min{
∑n

i=1
1
pi
, 1}). Then

Theorem 4.1 holds with X := L p⃗ and α := −
∑n

i=1
1
pi

.

Proof. It is straightforward that L p⃗ has an absolutely continuous norm. By this,
the proof of Theorem 5.6, Lemma 5.1, and the translation invariance of L p⃗,
we conclude that all the assumptions of Theorem 4.1 with X := L p⃗ and α :=
−

∑n
i=1

1
pi

are satisfied. Then, using Theorem 4.1 with X := L p⃗ and α := −
∑n

i=1
1
pi

,
we obtain the desired conclusions, which then completes the proof of Theorem
5.7. □

5.3. Lebesgue Spaces with Power Weights. We first present the definitions of
both Muckenhoupt weights and weighted Lebesgue spaces (see, for instance,
[24, Definitions 7.1.2 and 7.1.3]).

Definition 5.8. Let p ∈ [1,∞) and ω be a nonnegative locally integrable function
on Rn. Then ω is called an Ap weight, denoted by ω ∈ Ap, if, when p ∈ (1,∞),

[ω]Ap := sup
B⊂Rn

1
|B|

∫
B
ω(x) dx

{
1
|B|

∫
B
[ω(x)]−

1
p−1 dx

}p−1

< ∞

and

[ω]A1 := sup
B⊂Rn

1
|B|

∫
B
ω(x) dx

{
ess sup

x∈Rn
[ω(x)]−1

}
< ∞,

where the suprema are taken over all balls B ∈ B. Moreover, the class A∞ is
defined by setting

A∞ :=
⋃

p∈[1,∞)

Ap.

Definition 5.9. Let p ∈ (0,∞) and ω ∈ A∞. The weighted Lebesgue space Lp
ω is

defined to be the set of all measurable functions f on Rn such that

∥ f ∥Lp
ω
=

[∫
Rn
| f (x)|pω(x) dx

] 1
p

< ∞.

The following theorem is a corollary of Theorem 3.2.
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Theorem 5.10. Let p ∈ (1,∞), ω(x) := |x|β with β ∈ (0, n(p− 1)) for any x ∈ Rn,
and s ∈ (0,min{ n+βp , 1}). Then there exists a positive constant C such that, for
any f ∈ Ẇ s,X ∩ X

α
α+s with X := Lp

ω and α := −n+β
p ,[∫

Rn
|u(x)|

p(n+β)
n+β−sp |x|β dx

] n+β−sp
n+β

≤ C
"
Rn×Rn

|u(x) − u(y)|p

|x − y|n+β+sp |x|
β|y|β dx dy

Proof. From [20, p. 141], we know that |x|β ∈ Ap. Combining this and [68, p. 86],
we conclude that Lp

ω is a ball Banach function space. It is easy to prove that
Assumption I holds with X and α replaced, respectively, by Lp

ω and −n+β
p . From

β ∈ (0, n(p − 1)), we infer that, for any x ∈ Rn, ∥1B(x,1)∥Lp
ω
≥ ∥1B(0,1)∥Lp

ω
, which

implies that Assumption II holds with X := Lp
ω. Thus, all the assumptions of

Theorem 3.2 with X := Lp
ω and α := −n+β

p are satisfied. Then, using Theorem
3.2 with X := Lp

ω and α := −n+β
p , we obtain the desired conclusions and hence

complete the proof of Theorem 5.10. □

The following theorem is a corollary of Theorem 4.1.

Theorem 5.11. If p ∈ (1,∞), ω(x) := |x|β for any x ∈ Rn and some β ∈
(0,min{p, n(p−1)

2 }), and s ∈ (0,min{n+βp ,
p−β

p , 1}), then Theorem 4.1 holds with
X := Lp

ω and α := −n+β
p .

Proof. It is easy to show that Lp
ω has an absolutely continuous norm. By [20,

p. 141], we find that, for any t ∈ Rn, |x + t|2β ∈ Ap. Using this together with [24,
Exercise 7.1.9], we conclude that, for any t ∈ Rn, |x|β|x + t|β ∈ Ap. Then, from
[20, Theorem 7.3], we deduce that∥∥∥∥∥∥∥

∥∥∥∥∥∥
?

B(0,r)
f (x + z, y + z) dz

∥∥∥∥∥∥
Lp
ω

∥∥∥∥∥∥∥
Lp
ω

=

["
Rn×Rn

?
B(0,r)

f (x + z, y + z)p|x|β|y|β dz dx dy
] 1

p

=

["
Rn×Rn

?
B(0,r)

f (x + z, x + z + t)p|x|β|x + t|β dz dx dt
] 1

p

≲

["
Rn×Rn

f (x, x + t)p|x|β|x + t|β dx dt
] 1

p

=

["
Rn×Rn

f (x, y)p|x|β|y|β dx dy
] 1

p

=
∥∥∥∥ f (x, y)∥Lp

ω

∥∥∥
Lp
ω
.

This proves that Assumption III(ii) holds with X := Lp
ω. By the definition of ∥·∥Lp

ω

and s ∈ (0,min{ n+βp ,
p−β

p , 1}), we conclude that, for any y ∈ B(0, 1),∥∥∥∥∥∥∥ 1B(y,1)(·)

| · −y|s−1+ n+β
p

∥∥∥∥∥∥∥
Lp
ω

=

∫
B(y,1)

|x|β

|x − y|(s−1)p+n+β dx ≲
∫

B(0,2)

1
|x − y|(s−1)p+n+β dx < ∞.
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This shows that Assumption III(iii) holds with X := Lp
ω. Combining the above

observations and the proof of Theorem 5.10, we conclude that all the assump-
tions of Theorem 4.1 with X := Lp

ω and α := −n+β
p are satisfied. Then, using

Theorem 4.1 with X := Lp
ω and α := −n+β

p , we obtain the desired conclusions,
which completes the proof of Theorem 5.11. □

5.4. Besov–Triebel–Lizorkin–Bourgain–Morrey Spaces. It is well known that
Morrey-type spaces, serving as a good substitute of Morrey spaces, have been
found many applications in harmonic analysis and partial differential equations;
see, for example, [21, 25, 43, 53, 74]. To study the Bochner–Riesz multiplier
problems inR3, Bourgain [9] introduced a special Bourgain–Morrey spaces. Sub-
sequently, Masaki [50] introduced Bourgain–Morrey spaces for the full range
of exponents to explore some problems on nonlinear Schrödinger equations.
In addition, Bourgain–Morrey spaces have many applications in the theory of
partial differential equations (see, for example, [5, 10, 41, 51, 52, 61, 62]). Re-
cently, Hatano et al. [35] revealed several fundamental real-variable properties of
Bourgain–Morrey spaces. Motivated by Bourgain–Morrey spaces and the struc-
ture of Besov spaces (or Triebel–Lizorkin spaces), Zhao et al. [81] and Hu et
al. [38] respectively introduced Besov–Bourgain–Morrey spaces and Triebel–
Lizorkin–Bourgain–Morrey spaces as follows.

Definition 5.12. Let 0 < q ≤ p ≤ r ≤ ∞, τ ∈ (0,∞], and {Qν,m}ν∈Z, m∈Zn be the
system of dyadic cubes of Rn.

(i) The Besov–Bourgain–Morrey space ṀBp,τ
q,r is defined to be the set of all

f ∈ Lq
loc such that

∥ f ∥ṀBp,τ
q,r

:=

∑
ν∈Z

∑
m∈Zn

(
|Qνm|

1
p−

1
q
∥∥∥ f 1Qνm

∥∥∥
Lq

)r

τ
r


1
τ

< ∞

with the usual modifications made when r = ∞ and τ = ∞.
(ii) The Triebel–Lizorkin–Bourgain–Morrey space ṀF p,τ

q,r is defined to be the
set of all f ∈ Lq

loc such that

∥ f ∥ṀF p,τ
q,r

:=

∫
Rn

{∫ ∞

0

[
tn( 1

p−
1
q−

1
r )
∥∥∥ f 1B(y,t)

∥∥∥
Lq

]τ dt
t

} r
τ

dy


1
r

< ∞

with the usual modifications made when r = ∞ and τ = ∞.

The following theorem is a corollary of Theorem 3.2.

Theorem 5.13. Let both 0 ≤ q < p < r ≤ ∞ and τ ∈ (1,∞) or 1 ≤ q ≤ p ≤ r ≤
τ = ∞, A ∈ {B, F}, s ∈ (0,min{ np , 1}), and γ := n

n−sp . Then there exists a positive
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constant C such that, for any f ∈ Ẇ s,X ∩ X
α
α+s with X := ṀAp,τ

q,r and α := − n
p ,

∥ f ∥ṀAγp,γτ
γq,γr
≤ C

∥∥∥∥∥∥∥
∥∥∥∥∥∥ | f (x) − f (y)|

|x − y|s+
n
p

∥∥∥∥∥∥
ṀAp,τ

q,r

∥∥∥∥∥∥∥
ṀAp,τ

q,r

.

Proof. We only consider the case A = B because the proof of the case A = F
is similar and hence we omit the details. From the proof of [82, Lemma 4.10],
we infer that ṀBp,τ

q,r is a ball Banach function space. It is easy to prove that
Assumption I holds with X and α replaced, respectively, by ṀBp,τ

q,r and − n
p . By

these, Lemma 5.1, and the translation invariance of ṀBp,τ
q,r , we conclude that all

the assumptions of Theorem 3.2 with X := ṀBp,τ
q,r and α := − n

p are satisfied.
Then, using Theorem 3.2 with X := ṀBp,τ

q,r and α := − n
p , we obtain the desired

conclusions, which completes the proof of Theorem 5.13. □

The following theorem is a corollary of Theorem 4.1.

Theorem 5.14. Let 0 < q < p < r < ∞, τ ∈ (1,∞), A ∈ {B, F}, and s ∈
(0,min{ np , 1}). Then Theorem 4.1 holds with X := ṀAp,τ

q,r and α := − n
p .

Proof. We only consider the case A = B because the proof of the case A = F
is similar and hence we omit the details. From the proof of [82, Theorem 4.12],
we infer that ṀBp,τ

q,r has an absolutely continuous norm. By this, the proof of
Theorem 5.13, Lemma 5.1, and the translation invariance of ṀBp,τ

q,r , we conclude
that all the assumptions of Theorem 4.1 with X := ṀBp,τ

q,r and α := − n
p are

satisfied. Then, using Theorem 4.1 with X := ṀBp,τ
q,r and α := − n

p , we obtain the
desired conclusions, which completes the proof of Theorem 5.14. □

5.5. Lorentz Spaces. The Lorentz space was studied by Lorentz [47, 48] in the
early 1950’s. As a natural generalization of Lebesgue spaces, Lorentz spaces
serve as the intermediate spaces of Lebesgue spaces in the real interpolation
(see, for example, [12]). For more studies on Lorentz spaces and their associated
function spaces, we refer to [64, 73, 44, 45].

Definition 5.15. Let p ∈ (0,∞) and q ∈ (0,∞]. For any f ∈M , let

a f (λ) := |{x ∈ Rn : | f (x)| > λ}|

and
f ∗(t) := inf{λ ∈ (0,∞) : a f (λ) ≤ t}.

The Lorentz space Lp,q is defined to be the set of all functions f ∈M such that,
when p, q ∈ (0,∞),

∥ f ∥Lp,q :=
{

q
p

∫ ∞

0

[
t

1
p f ∗(t)

]q dt
t

} 1
q

< ∞



THE BALL BANACH FRACTIONAL SOBOLEV INEQUALITY 31

and

∥ f ∥Lp,∞ := sup
t∈(0,∞)

t
1
p f ∗(t) < ∞.

The following theorem is a corollary of Theorem 3.2.

Theorem 5.16. Let p ∈ (1,∞), q ∈ (1,∞], and s ∈ (0,min{ np , 1}). Then there
exists a positive constant C such that, for any f ∈ Ẇ s,X ∩X

α
α+s with X := Lp,q and

α := − n
p ,

∥ f ∥
L

p2
p−sn ,

pq
p−sn
≤ C

∥∥∥∥∥∥
∥∥∥∥∥∥ | f (x) − f (y)|

|x − y|s+
n
p

∥∥∥∥∥∥
Lp,q

∥∥∥∥∥∥
Lp,q

.

Proof. From [68, p. 87], we infer that Lp,q is a ball Banach function space. It is
easy to show that Assumption I holds with X and α replaced, respectively, by Lp,q

and − n
p . By these, Lemma 5.1, and the translation invariance of Lp,q, we conclude

that all the assumptions of Theorem 3.2 with X := Lp,q and α := − n
p are satisfied.

Then, using Theorem 3.2 with X := Lp,q and α := − n
p , we obtain the desired

conclusions, which completes the proof of Theorem 5.16. □

The following theorem is a corollary of Theorem 4.1.

Theorem 5.17. Let p ∈ (1,∞), q ∈ (1,∞), and s ∈ (0,min{ np , 1}). Then Theorem
4.1 holds with X := Lp,q and α := − n

p .

Proof. From [76, Remark 3.4(iii)], we infer that Lp,q has an absolutely continu-
ous norm. By this, the proof of Theorem 5.16, Lemma 5.1, and the translation
invariance of Lp,q, we conclude that all the assumptions of Theorem 4.1 with
X := Lp,q and α := − n

p are satisfied. Then, using Theorem 4.1 with X := Lp,q

and α := − n
p , we obtain the desired conclusions, which completes the proof of

Theorem 5.17. □
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